Full Content is available to subscribers

Subscribe/Learn More  >

Ground State Structure of Cu Nanoclusters

[+] Author Affiliations
Y. H. Park

New Mexico State University, Las Cruces, NM

I. Hijazi

Georgia Institute Technology, Atlanta, GA

Paper No. PVP2011-57748, pp. 295-299; 5 pages
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 2: Computer Technology and Bolted Joints
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4452-6
  • Copyright © 2011 by ASME


The study of metal clusters has attracted much attention in recent years. Noble metal nanoparticles are of particular interest since their chemical, thermodynamic, electronic, and optical properties make them interesting candidates as building blocks of nanostructure materials. Delineation of these properties requires a complete and definitive characterization of the cluster’s geometrical structure. To find the ground state structure for a cluster, the potential-energy surface (PES) needs to be searched. In this paper, we proposed an efficient hierarchical search method to determine a ground state structure of copper clusters using an effective Monte Carlo simulated annealing method, which employs the Aggregate-Volume-Bias Monte Carlo (AVBMC) algorithm. Incorporated in the Monte Carlo method, is an efficient Embedded Atom Method (EAM) potential developed by the authors.

Copyright © 2011 by ASME
Topics: Ground state



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In