0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Creep of Non-Asbestos Sheet Gaskets at Elevated Temperature on Relaxation Behavior of Bolted Flange Joints

[+] Author Affiliations
Atsushi Yamaguchi, Takashi Honda

National Institute of Industrial Safety, Kiyose, Tokyo, Japan

Masahiro Hagihara

Tokyo Denki University, Hatoyama, Saitama, Japan

Hirokazu Tsuji

Tokyo Denki University, Tokyo, Japan

Paper No. PVP2011-57721, pp. 273-277; 5 pages
doi:10.1115/PVP2011-57721
From:
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 2: Computer Technology and Bolted Joints
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4452-6
  • Copyright © 2011 by ASME

abstract

Gaskets in bolted flange joints experience creep when used for long periods of time. Since gaskets are often used at elevated temperatures, the clarification of their high-temperature creep behavior is essential. Relaxation of bolted flange joints is caused by creep in the gaskets, and may result in leakage of internal fluids. Therefore, the ability to predict relaxation in bolted flange joints due to the effects of creep in gaskets would allow the lifetime of the gaskets to be estimated and thus prevent leakage of internal fluid. In the present study, the creep behavior of non-asbestos sheet gaskets and the relaxation behavior of these gaskets in bolted flange joints at room/elevated temperature were investigated using four-inch flanges. The test conditions were 180 °C for 360 hours (approximately 2 weeks). The test samples were four types of non-asbestos sheet gaskets, two types of compressed fiber sheet gaskets and two types of PTFE sheet gaskets. The differences in creep behavior between the two types of compressed fiber sheet gaskets and between the two types of PTFE sheet gaskets were clarified. The creep strain at the end of the test was always larger than that just after reaching the test temperature for all gasket materials. On the other hand, the creep strain in the PTFE sheet gaskets just after reaching the elevated temperature was approximately equivalent to the total creep strain after the test has been completed. Thus, the creep behavior of each test gaskets was clarified under aging. In addition, the time for replacement of gaskets was estimated using the relaxation behavior in bolted flange joints by defining the time to reach the minimum design seating stress of the test gasket.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In