Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Shape Design Under Elastic-Plastic Behavior Based on Reference Volume Method

[+] Author Affiliations
R. Adibi-Asl

AMEC NSS Ltd., Toronto, ON, Canada

Paper No. PVP2011-57889, pp. 125-136; 12 pages
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 2: Computer Technology and Bolted Joints
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4452-6
  • Copyright © 2011 by ASME


The main objective of this paper is to determine the regions in a component or structure that directly participate in inelastic action (reference volume) using a new robust simplified method, namely the Elastic Modulus Adjustment Procedure (EMAP). The proposed method is based on iterative linear elastic finite element analysis that is implemented by modifying the local elastic modulus of the material at each subsequent iteration. The application of reference volume on optimum shape design is demonstrated through some practical examples including thick-walled cylinder, shank-head component and overlap joint weld. The results show that the reference volume concept can be used to optimize the shape of a body with respect to load carrying capacity and fatigue strength.

Copyright © 2011 by ASME
Topics: Design , Shapes



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In