Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Mini Liquid Cooling System for High Heat Flux Electronic Devices

[+] Author Affiliations
Chien-Yuh Yang

National Central University, Chung-Li, Taiwan

Chun-Ta Yeh, Kou-Chung Huang, Shao-Nong Tsai

Prolynn Technology Incorporation, Chung-Li, Taiwan

Paper No. ICNMM2009-82156, pp. 1425-1430; 6 pages
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME


The size of the most of the current commercialized liquid cooling systems is apparently too large to be easily adapted in a notebook or a mini size desk top computer. This study incorporated the authors’ previous micro heat exchanger design with an extra slim pump concept proposed by a local manufacturer to develop a high performance miniature liquid cooling system. An integrated pump and cold plate assembly was also developed for further reducing the overall size of the system. In comparing to the commercial products, the test results show that the micro pump provides a higher maximum pressure head and maximum flow rate performance. The cold plate has the lowest thermal resistance at moderate and high flow rate region. And the performed of the entire liquid system is similar to that of the recently announced product. It is emphasized that the size of the present developed cold plate, pump and liquid cooling system is much smaller than that of all commercial products.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In