0

Full Content is available to subscribers

Subscribe/Learn More  >

Electrical Detection of Pollen Allergen Using Electrode-Embedded-Micro-Channel

[+] Author Affiliations
Chihiro Kawaguchi, Satoyuki Kawano

Osaka University, Toyonaka, Osaka, Japan

Masateru Taniguchi, Makusu Tsutsui, Tomoji Kawai

Osaka University, Ibaraki, Osaka, Japan

Paper No. AJK2011-36035, pp. 405-407; 3 pages
doi:10.1115/AJK2011-36035
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 2, Fora
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4441-0
  • Copyright © 2011 by ASME

abstract

Hay fever is a disease that approximately 20 percent of the world population develop. Providing appropriate treatment for this plant-specific pollen allergy requires a method to identify various types of pollen. Here we introduce a technique that can be used for direct detections of single biological macromolecules such as pollen. Our method is based on two-probe current measurements using a microfluidic-channel-embedded-electrode system. A fabrication procedure of the device is as follows. First, we formed two gold nanoelectrodes by standard electron beam lithography and lift-off processes. The interelectrode gap distance was designed to be 500 nm. We then deposited a SiO2 layer. After that, we fabricated Cr etching mask. Finally, we dry-etched the sample by reactive ion etching and obtained a microfluidic-channel-embedded-electrode structure. We flowed HEPES(2-[4-(2-Hydroxyethyl)-1-piperazinyl] ethanesulfonic acid) solution containing pollen of 500 nm size into the micro-channel and simultaneously measured current flowing through the two electrodes. Characteristic spike-like signals were observed; sharp rise of the current followed by a rather smooth decrease to the base current level. We exhibited control experiments in a HEPES solution wherein no pollen was added and observed only featureless current traces. We anticipate that the sharp current rise is associated with trapping of a single cedar pollen between the electrodes whereas the gradual current decrease represents the pollen detrapping. We propose the technique for identifying several kinds of pollens based on the height and the width of the current spikes.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In