Full Content is available to subscribers

Subscribe/Learn More  >

Theoretical Development of Predicted Iteration Method for Considering Electron Dynamics in Quantum Molecular Dynamics

[+] Author Affiliations
Kentaro Doi, Satoyuki Kawano

Osaka University, Toyonaka, Osaka, Japan

Paper No. AJK2011-36033, pp. 399-401; 3 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 2, Fora
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4441-0
  • Copyright © 2011 by JSME


In the present study, a theoretical principle of molecular dynamics methods is developed, in which electron transfers are taken into account effectively based on quantum mechanics. In chemical reaction systems, electrodynamics should be considered in the molecular dynamics simulation because electron transfers play an important role. In this study, an effective procedure is proposed to treat time evolutions of electronic wavefunctions. In the procedure, electronic wavefunctions can be transformed to other spaces such as Mulliken atomic charges or electrostatic potentials, and then their time evolutions are coupled with the motions of ionic cores. The present method is applied to some chemical reaction systems, and charge transfer effects can be treated successfully in molecular dynamics simulations. The importance of a coupling method of molecular dynamics and electrodynamics is described.

Copyright © 2011 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In