0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of an Electron Scattering Model to Detect Differences in DNA Base Molecules

[+] Author Affiliations
Yuki Nishioka, Kentaro Doi, Satoyuki Kawano

Osaka University, Osaka, Japan

Paper No. AJK2011-36031, pp. 391-392; 2 pages
doi:10.1115/AJK2011-36031
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 2, Fora
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4441-0
  • Copyright © 2011 by JSME

abstract

In recent, novel technologies which apply bio-macromolecules to bio-nanodevices attract much attention. Particularly, DNAs have several desirable characteristics: complementary base pairs, self assembly, and electric conductivity. It is expected that high-speed DNA sequencers can be developed by using these specific characteristics of DNAs. In the present study, we develop a theoretical model to analyze the difference of DNA base molecules, in which electron scattering is simulated based on classical electrodynamics and scattering angles are evaluated. Consequently, it is found that scattering angles of the scattered electrons are clearly different from each other.

Copyright © 2011 by JSME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In