0

Full Content is available to subscribers

Subscribe/Learn More  >

Micro Rod Mixer Using AC Electric Field Induced Flow

[+] Author Affiliations
Hiromichi Obara, Shinichi Tashiro

Tokyo Metropolitan University, Hachioji, Tokyo, Japan

Paper No. AJK2011-36026, pp. 375-376; 2 pages
doi:10.1115/AJK2011-36026
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 2, Fora
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4441-0
  • Copyright © 2011 by JSME

abstract

A novel rod mixer, using a micro-scale flow structure induced with electrokinetics under an AC electric field, is proposed for three-dimensional micro-scale processing of biological applications. Flow structures around the micro-rod mixer are demonstrated using the micro-particle image velocimetry method and the particle-tracking velocimetry method. Characteristics of the flow structure and mixing property are investigated for several electric field intensities and frequencies. It is observed that the micro-mixing flow structures induced with an AC electric field at the appropriate intensity and frequency conditions which are intermediate conditions between a dielectrophoresis and an electrolysis. A source-type three-dimensional flow structure is generated around the tip of the micro-rod electrode installed in the sample liquid. Furthermore it is possible to control the scale of the flow structure by adjusting the supplied AC electric field intensity and frequency. The mixing characteristics are also discussed.

Copyright © 2011 by JSME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In