0

Full Content is available to subscribers

Subscribe/Learn More  >

An Estimation of Thermodynamic and Transport Properties of Cryogenic Hydrogen Using Classical Molecular Simulation

[+] Author Affiliations
Hiroki Nagashima, Takashi Tokumasu

Tohoku University, Sendai, Miyagi, Japan

Shin-ichi Tsuda

Shinshu University, Nagano, Nagano, Japan

Nobuyuki Tsuboi

Kyushu Institute of Technology, Kitakyushu, Fukuoka, Japan

Mitsuo Koshi

University of Tokyo, Bunkyo, Tokyo, Japan

A. Koichi Hayashi

Aoyama Gakuin University, Sagamihara, Kanagawa, Japan

Paper No. AJK2011-36005, pp. 289-299; 11 pages
doi:10.1115/AJK2011-36005
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 2, Fora
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4441-0
  • Copyright © 2011 by JSME

abstract

In this paper, we estimated the thermodynamic and transport properties of cryogenic hydrogen using classical molecular simulation to clarify the limit of classical method on the estimation of those properties of cryogenic hydrogen. Three empirical potentials, the Lennard-Jones (LJ) potential, two-center Lennard-Jones (2CLJ) potential, and modified Buckingham (exp-6) potential, and an ab initio potential model derived by the molecular orbital (MO) calculation were applied. Molecular dynamics (MD) simulations were performed across a wide density-temperature range. Using these data, the equation of state (EOS) was obtained by Kataoka’s method, and these were compared with NIST (National Institute of Standards and Technology) data according to the principle of corresponding states. Moreover, we investigated transport coefficients (viscosity coefficient, diffusion coefficient and thermal conductivity) using time correlation function. As a result, it was confirmed that the potential model has a large effect on the estimated thermodynamic and transport properties of cryogenic hydrogen. On the other hand, from the viewpoint of the principle of corresponding states, we obtained the same results from the empirical potential models as from the ab initio potential, showing that the potential model has only a small effect on the reduced EOS: the classical MD results could not reproduce the NIST data in the high-density region. This difference is thought to arise from the quantum effect in actual liquid hydrogen.

Copyright © 2011 by JSME
Topics: Simulation , Hydrogen

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In