0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional IC With Non-Uniform Heat Flux

[+] Author Affiliations
Yoon Jo Kim, Yogendra K. Joshi, Andrei G. Fedorov, Young-Joon Lee, Sung Kyu Lim

Georgia Institute of Technology, Atlanta, GA

Paper No. ICNMM2009-82133, pp. 1249-1258; 10 pages
doi:10.1115/ICNMM2009-82133
From:
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME

abstract

It is now widely recognized that three-dimensional (3D) system integration is a key enabling technology to achieve the processing speeds and performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D stacked ICs, interlayer microfluidic cooling scheme is adopted and analyzed in this study. The effects of cooling scheme and essential geometry variations on the routing completion and congestion of electrical interconnect are quantitatively analyzed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that refrigerants in two-phase flow are thermally preferred due to the higher heat transfer coefficients, and relatively constant fluid temperature throughout the microchannel. However, the large internal pressure and pressure drop act as significant limiting factors in realizing the merits of two-phase cooling. It is also concluded that integration of high performance hot-spot thermal management is a key to addressing a challenge of mass flow rate mal-distribution.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In