Full Content is available to subscribers

Subscribe/Learn More  >

A Molecular Dynamics Approach for Nucleation-Growth of Cryogenic Cavitation

[+] Author Affiliations
Shin-ichi Tsuda

Shinshu University, Nagano City, Nagano, Japan

Taiga Komatsu, Shu Takagi, Yoichiro Matsumoto

The University of Tokyo, Bunkyo-ku, Tokyo, Japan

Paper No. AJK2011-33016, pp. 231-236; 6 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 2, Fora
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4441-0
  • Copyright © 2011 by JSME


The growth of cavitation bubble nuclei in a metastable state in liquid argon, as one of cryogenic fluids, was investigated using a Molecular Dynamics (MD) simulation with a Nosé-Hoover chain thermostat. We observed rapid growth of bubble nuclei with weak inter-bubble interaction in the early stage, while observed a competing coarsening that looks like Ostwald ripening in the late stage and its growth exponent n became 0.51. We compared the present MD result with that in an adiabatic simulation (Energy-constant MD without any thermostats), and the influence of the field temperature was discussed. Also, we compared the present MD results with a coarsening theory for droplets, and discussed the characteristics of the coarsening mechanism of bubble nuclei.

Copyright © 2011 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In