0

Full Content is available to subscribers

Subscribe/Learn More  >

Microvascular Structure and Function in Vitro

[+] Author Affiliations
Abraham D. Stroock, Nak Won Choi, Tobias D. Wheeler, Valerie Cross, Scott Verbridge, Claudia Fischbach, Lawrence J. Bonassar

Cornell University, Ithaca, NY

Paper No. ICNMM2009-82124, pp. 1195-1202; 8 pages
doi:10.1115/ICNMM2009-82124
From:
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME

abstract

Vascular structure — a network of convective paths — is a ubiquitous element in multicellular, living systems. The key function of vascular structure in animals and plants is mediation of convective mass transfer over macroscopic distances; this transfer allows an organism to monitor and control the chemical state of its tissues. In our laboratory, we are developing methods to embed and operate microfluidic systems within tissue-like materials in order to capture this function for both biological and non-biological applications. I will present two examples to illustrate our efforts: 1) Capillary beds for the culture of mammalian cells in three-dimensions. In this section, I will discuss the development of methods both to fabricate synthetic capillary beds and to grow them directly out of endothelial cells. I will highlight how simple ideas from continuum mechanics and material science have guided our efforts. 2) Synthetic xylem networks that allow for the transpiration of water at large negative pressures. I will point out the unusual thermodynamic and transport phenomena that are involved in the transpiration process in plants. I will then present our perspectives on the design criteria for systems — synthetic and biological — that mediate this process. Finally, I will describe our experiments with “synthetic trees” in which we have reproduced the main features of transpiration. I will conclude with perspectives on applications and generalizations of both these classes of vascularized materials.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In