0

Full Content is available to subscribers

Subscribe/Learn More  >

Bubble Dynamics Observed in a Gas-Liquid Venturi Flow

[+] Author Affiliations
Wataru Nishi, Masanori Nogami, Hiroyuki Takahira

Osaka Prefecture University, Sakai, Osaka, Japan

Paper No. AJK2011-33009, pp. 191-197; 7 pages
doi:10.1115/AJK2011-33009
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 2, Fora
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4441-0
  • Copyright © 2011 by JSME

abstract

The present study deals with the experiments for the gas-liquid two-phase flow inside an acrylic Venturi tube using a high-speed video camera. Some interesting phenomena on the bubble dynamics are observed in the tube. First, the volume and surface oscillations of two interacting bubbles are observed in converging section of the tube when one bubble enters the throat. The volume oscillation of the bubble that enters the throat is caused by the detachment of the tip of the downstream surface of the bubble. The pressure wave irradiated from the bubble that enters the throat induces the volume and surface oscillations of the bubble that remains at the converging section. The parametric excitation is the reason for the surface oscillations. Second, the bubble deformations at the throat in a Venturi or a converging tube are investigated. The experiments show that two kinds of liquid jets are formed on the bubble surface; one is a forward jet that develops from the upstream surface to the downstream surface and the other is a counter jet in which the direction of the jet is opposite to the forward jet. It is shown that the counter jet occurs only when the distance between two bubbles in the throat is sufficiently short. The interactions between two bubbles cause the counter jet. It is also shown that the velocity of the forward jet becomes faster when the bubble is pinched off more upstream in the converging section. Finally, the propagations of the pressure waves are measured with pressure transducers. The impulsive pressure associated with the collapse of cavitation bubble cloud is measured when a bubble enters the throat of the tube. Also, the propagation speed of pressure waves is evaluated with the cross-correlation function. The results show that the propagation speed and damping of the pressure waves are dependent on the number density of bubbles at the downstream part in the tube.

Copyright © 2011 by JSME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In