0

Full Content is available to subscribers

Subscribe/Learn More  >

Gaseous Bubble Nucleation Under Shear Flow

[+] Author Affiliations
Ho-Young Kwak, Ki-Moon Kang

Chung-Ang University, Seoul, Republic of Korea

Paper No. ICNMM2009-82078, pp. 1063-1068; 6 pages
doi:10.1115/ICNMM2009-82078
From:
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME

abstract

A decompression experiment of a water solution, saturated with methane gas at about 68 atm at room temperature, was done to investigate gas bubble nucleation under shear flow. A pressure reduction from 68 atm to atmospheric pressure is well below the decompression pressure required for spontaneous bubble nucleation of the methane gas, about 120 atm. The application of a shear flow from 5 minutes before to 1 minute after the decompression induced active bubble formation and the final gas content in the solution was reduced substantially, even with the application of low shear rate of 25/s.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In