Full Content is available to subscribers

Subscribe/Learn More  >

Molecular Dynamics Simulation of Interfacial Thermal Resistance of Nanofins

[+] Author Affiliations
Navdeep Singh, V. U. Unnikrishnan, J. N. Reddy, Debjyoti Banerjee

Texas A&M University, College Station, TX

Paper No. ENIC2008-53049, pp. 123-127; 5 pages
  • ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences
  • ASME 2008 3rd Energy Nanotechnology International Conference
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4323-9 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


In this study molecular dynamic (MD) simulations are performed to study the interfacial thermal resistance between a nanofin and a working fluid. A (5, 5) carbon nanotube (CNT) of diameter 6.78 Å and various lengths are immersed in different fluids in these analyses. For this simulation the total numbers of the fluid molecules, and the breath and the height of the cell are kept constant. In these simulations, the nanotube is placed at the centre of the cell and the matrix molecules surround the nanotube. Periodic boundary conditions are applied in all the directions. So the system under consideration is array of long nanotubes aligned in the horizontal direction. Simulation procedure consists of first minimizing the system. During the minimization the system is allowed to relax. During the simulations, nanotube and water molecules are allowed to move but the cell size remains constant. After minimization, NVT process is performed for 10ps to scale the velocities so that the average temperature of the cell is 300K. After the ensemble is equilibrated to the base temperature of 300K, the temperature of the nanotube is raised to 750K, by scaling the velocities of the carbon atoms. In the next step the system is allowed to relax under constant energy. This is done by performing the NVE equilibration for 10ps. The difference in the temperature of the carbon nanotube and the matrix is then calculated and plotted against the equilibration time. For the all three matrix, the temperature decreases exponentially with time as predicted by various researchers in the literature. From the graphs the interfacial resistance for water, ethyl alcohol and 1-Hexene is found to be 7.76×10-8, 6.76×10-8 and 35.1×10-8 W/m2K. The value of interfacial resistance for water is consistent with results in the literature.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In