Full Content is available to subscribers

Subscribe/Learn More  >

Modeling and Designing a Device Using MuGFETs

[+] Author Affiliations
V. K. Lamba

HCTM Kaithal, Kaithal, Haryana, India

Derick Engles, S. S. Malik

Guru Nanak Dev University, Amritsar, Punjab, India

Paper No. ENIC2008-53015, pp. 89-93; 5 pages
  • ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences
  • ASME 2008 3rd Energy Nanotechnology International Conference
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4323-9 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


This work describes computer simulations of various, Silicon on Insulator (SOI) Metal Oxide Semiconductor Field Effect Transistor (MOSFETs) with double and triple-gate structures, as well as gate-all-around devices. To explore the optimum design space for four different gate structures, simulations were performed with four variable device parameters: gate length, channel width, doping concentration, and silicon film thickness. The efficiency of the different gate structures is shown to be dependent of these parameters. Here short-channel properties of multi-gate SOI MOSFETs (MuGFETs) are studied by numerical simulation. The evolution of characteristics such as Drain induced barrier lowering (DIBL), sub-threshold slope, and threshold voltage roll-off is analyzed as a function of channel length, silicon film or fin thickness, gate dielectric thickness and dielectric constant, and as a function of the radius of curvature of the corners. The notion of an equivalent gate number is introduced. As a general rule, increasing the equivalent gate number improves the short-channel behavior of the devices. Similarly, increasing the radius of curvature of the corners improves the control of the channel region by the gate.

Copyright © 2008 by ASME
Topics: Design , Modeling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In