0

Full Content is available to subscribers

Subscribe/Learn More  >

Large Eddy Simulation of the Flow Field in the Hudson River

[+] Author Affiliations
Tuy N. M. Phan, John C. Wells

Ritsumeikan University, Kusatsu, Shiga, Japan

William D. Kirkey, James S. Bonner

Clarkson University, Postdam, NY

Mohammad S. Islam

Beacon Institute, Beacon, NY

Paper No. AJK2011-25011, pp. 3933-3939; 7 pages
doi:10.1115/AJK2011-25011
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by ASME

abstract

Large-eddy simulation (LES) has been conducted under idealized conditions in two river reaches of the Hudson River (New York, USA), with near-bank resolution set to some 5 meters in order to resolve large-scale motions of turbulence in the near-bank regions. To simplify analysis, simulation is performed at a constant discharge corresponding to a typical ebb tide. A standard Smagorinsky model is implemented in the commercial package FLUENT, with buoyancy neglected and bottom roughness set to zero. We perform Proper Orthogonal Decomposition (POD) on the LES results. POD modes are orthogonal flow fields that capture the kinetic energy in an optimally convergent fashion. Results show that only a few POD modes are enough to describe the most energetic flow dynamics. In a reach around the Indian Point power plant, the second and third modes reflect an interesting generation of separating eddies on the western bank, which we do not find with a URANS (standard k-ε) computation on the same grid. To test our simulation, a comparison of simulation results with other simulation results and Acoustic Doppler Current Profiler (ADCP) data measured at West Point, New York will be presented.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In