0

Full Content is available to subscribers

Subscribe/Learn More  >

Self-Healing in an Aluminum Alloy Reinforces With Microtubes

[+] Author Affiliations
Jose Martinez Lucci, R. S. Amano, Pradeep Rohatgi, Benjamin Schultz

University of Wisconsin - Milwaukee, Milwaukee, WI

Paper No. ENIC2008-53011, pp. 79-88; 10 pages
doi:10.1115/ENIC2008-53011
From:
  • ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences
  • ASME 2008 3rd Energy Nanotechnology International Conference
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4323-9 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

For the last decade, many researchers have been working to develop self-healing materials, and have obtained good results in the field of polymers. The research described in this paper applies the concept of self healing to fabricate self healing metal matrix composites, with the aid of models developed by the authors for the manufacturing processes and self-healing behavior. The development of self-healing metals is a novel idea that has not been explored in great detail yet. The concept of self-healing described in this paper consists of controlling a low temperature melting alloy imbedded within a higher temperature alloy to create a self healing composite (SHC). When the SHC is damaged or cracked, heat may be applied to the affected area whereupon the low melting alloy will melt and flow into the crack healing the damage and sealing the crack. This study consists of theoretical analysis, metallurgical design, experimental synthesis and Computational Fluid Dynamics of a self-healing aluminum alloy designed by the authors. The aluminum alloy matrix is reinforced with microtubes of alumina (Al2 O3 ) that are filled with a low melting point solder alloy. The objective of the study reported here was to find the influence and efficiency of the solder in healing an aluminum matrix. To check this effect a crack was created in the metal surface, piercing the microtube(s) filled with solder, and then the SHC was heated above the melting point of the solder alloy.

Copyright © 2008 by ASME
Topics: Aluminum alloys

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In