0

Full Content is available to subscribers

Subscribe/Learn More  >

Turbulence in Accelerating Boundary Layers

[+] Author Affiliations
Pranav Joshi, Xiaofeng Liu, Joseph Katz

The Johns Hopkins University, Baltimore, MD

Paper No. AJK2011-25010, pp. 3921-3932; 12 pages
doi:10.1115/AJK2011-25010
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by ASME

abstract

In this study we focus on the effect of mean flow acceleration on the near wall structures within turbulent boundary layers. 2D PIV measurements in streamwise-wall normal and streamwise-spanwise planes have been performed upstream of and within a sink flow for inlet Reθ of 6326 and 3071, and at constant acceleration parameters of K = 0.6×10−6 and 1.1×10−6 , respectively. Due to the imposed favorable pressure gradient (FPG), the Reynolds stresses normalized by the local freestream velocity decrease over the entire boundary layer. However, when scaled by the inlet freestream velocity, stresses increase close to the wall and decrease in the outer part of the boundary layer. This is caused by the confinement of the structures in the near-wall region in the accelerating flow. The weaker normalized strength of the vortical structures and the substantial negative wall-normal mean velocity in the FPG region are identified as the likely contributors to this trend. Data in the wall parallel planes dissecting the large scale structures shows their signatures in the form of “swirling” patterns and low speed streaks. For the higher Reynolds number flow, the high near-wall ∂U/∂y in the accelerating region decreases the angle of inclination of the large eddies. Consequently, their signature in the x-z plane is weaker and elongated in the streamwise direction. In the FPG region, the small scale structures tend to occur in streamwise aligned groups and almost all of them are observed in the low speed streaks, which are the regions of ejection induced by large eddies. Due to the lower turbulence levels in the outer parts, the high momentum regions, indicating sweep events, contain very few small scale structures. This distinction between the low and high momentum regions is much weaker in the zero pressure gradient (ZPG) area which has high turbulence levels in the outer layer.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In