Full Content is available to subscribers

Subscribe/Learn More  >

Direct Numerical Simulation of Turbulent Friction Drag Reduction by Traveling Wave-Like Blowing Using Plasma Actuators

[+] Author Affiliations
Yasuhito Murai, Koji Fukagata

Keio University, Yokohama, Japan

Paper No. AJK2011-25008, pp. 3905-3910; 6 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by JSME


We numerically investigated the effects of friction drag reduction and energy gain by traveling wave-like blowing using plasma actuators arrayed on channel walls. Wall-normal flow is induced by opposed arrangement of plasma actuators. We used Shyy et al.’s model [1] to compute the body force of plasma actuators, which is added to the Navier-Stokes equation. With this model, the body force distribution is simplified as compared to the actual one, which is quite complicated. We perform direct numerical simulation under several parameter sets: the wavenumber, the amplitude, and the phasespeed of body forces. The obtained maximum friction drag reduction rate is 37% as compared to the uncontrolled case. Under the same phase speed and amplitude of body force, the friction drag is found to be reduced more with larger wavenumber. Under the same phase speed and wavenumber, the friction drag reduction is found to be larger with stronger body force. In the drag reducing cases, formation of spanwise vortices leads to reduction of the Reynolds sheer stress near the wall as well as the friction drag. Although net energy saving is acheived in some parameter sets, it is not achieved in most cases. This means that the reduced pumping power is generally smaller than the power input of plasma actuators.

Copyright © 2011 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In