Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Scanning Transient Harman Method for Thermoelectric Properties Characterization

[+] Author Affiliations
Eduardo E. Castillo, Theodorian Borca-Tasciuc

Rensselaer Polytechnic Institute, Troy, NY

Paper No. ENIC2008-53038, pp. 39-43; 5 pages
  • ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences
  • ASME 2008 3rd Energy Nanotechnology International Conference
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4323-9 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


Low-dimensional nanostructures and nano-composites may demonstrate a large enhancement of the thermoelectric figure of merit ZT, therefore measurements of their thermoelectric properties are of high interest. Techniques able to screen the thermoelectric properties of a large number of samples and also to measure the spatial distribution of thermoelectric properties in a specimen are needed. This work explores a scanning transient technique for thermoelectric characterization of thin films based on the Harman method. A one dimensional theoretical model was used to investigate the appropriate experimental setup and the effect of a scanning electrode/thermal probe contacting the top surface of the specimen. Results indicate that for micrometer thick films of ZT∼1 small current values of the order of mA and electrical contact resistance below 1 Ω are necessary to minimize the Joule heating effects and to take advantage of the Peltier effect when employing the bipolar technique. A proof of concept experiment was performed on an n-type Bi2 Te3 pellet used in a commercial thermoelectric device. The experiment lays out the strategy to extract the thermoelectric properties. Seebeck coefficient of −241 μV/K and thermal conductivity of 1.48 W/m.K were obtained from the transient Harman method when the data reduction model included energy losses through the wire. These results prelude the feasibility of the scanning technique on thin film samples.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In