0

Full Content is available to subscribers

Subscribe/Learn More  >

Fabrication of Nanochannels on Polymer Thin Film

[+] Author Affiliations
Vinh-Nguyen Phan, Patrick Abgrall, Nam-Trung Nguyen

Nanyang Technological University, Singapore

Peige Shao, Jeroen Anton Van Kan

National University of Singapore, Singapore

Paper No. ICNMM2009-82057, pp. 921-925; 5 pages
doi:10.1115/ICNMM2009-82057
From:
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME

abstract

Recent advances in nanotechnology allow the fabrication of structures down to the nanometer range. Various theoretical and experimental studies on the characteristics of fluid in nanochannels have been carried out in recent years. The results show that transport phenomena in nanoscale promise a wide range of applications in biological and chemical analysis. Practical applications require fabrication of nanochannels with a short production time and at a low cost. Polymer is considered as a suitable material for mass production of nanochannels due to the wide range of properties available, as well as the low cost of material and fabrication process. This paper reports the fabrication of planar nanochannels using hot embossing and thermal bonding technique on a polymer thin film. The mold for hot embossing was fabricated on a silicon wafer using photolithography and Reactive Ion Etching (RIE). Polymethylmethacrylate (PMMA) thin film with a thickness of 250 μm was used as the base material to emboss the nanochannels from the silicon mold. Temperature and pressure were controlled and recorded continuously during the embossing process. The channels then were examined by Atomic Force Microscope (AFM) in tapping mode to verify the width and the depth of the channel. Next, another piece of PMMA thin film was bonded to the first piece by thermal bonding process to make closed nanochannels. Temperature and pressure during the bonding process were controlled and recorded. Access to the channels was made on the thin film by a laser cutter before embossing. The results showed that open planar channels with the depth down to 30nm can be fabricated on PMMA thin film with a process time less than 30 minutes. Width and depth of the channels agree well with appropriate dimensions on the mold. Bonding can be achieved within 40 minutes. Closed planar channels with the depth of 300nm were fabricated successfully by a combination of embossing and thermal bonding processes. This project demonstrates the possibility of fabricating nanochannels with low cost and short processing time using polymer material. The processes are suitable not only for nanochannels but also for more complicated nanostructures. The presented technique allows the fabrication of nanodevices with various designs.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In