0

Full Content is available to subscribers

Subscribe/Learn More  >

A Computational Study of Catalytic Platinum Nanoparticles With and Without OH Chemisorption During Reactions

[+] Author Affiliations
Mikhail Sekachev, Cheng-Xian Lin, Don Dareing

University of Tennessee - Knoxville, Knoxville, TN

Zhiyu Hu

Oak Ridge National Laboratory, Oak Ridge, TN

Paper No. ENIC2008-53029, pp. 15-22; 8 pages
doi:10.1115/ENIC2008-53029
From:
  • ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences
  • ASME 2008 3rd Energy Nanotechnology International Conference
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4323-9 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

In this paper, various energies and geometries of pure platinum nanoparticles and those of platinum nanoparticles with adsorbed OH were investigated. Ten different platinum clusters of up to 28 atoms were studied using spin-unrestricted density functional theory (DFT) with a double numerical plus polarization basis set. Three different shapes were presented, and the effect of cluster size on binding energy, total energy, and HOMO-LUMO energy gap was investigated. The same set of calculations was performed for selected clusters with OH adsorbate on the Pt(111) surface. The results show that the stability of both the pure clusters and the clusters with adsorbed OH molecule increases with an increase of cluster size. This fact indicates that direct influence of the size of Pt cluster on the reaction rate is possible, and the understanding of how cluster size would affect binding energy is important. The effect of cluster size on total energy of molecule was shown to be a linear function independent of cluster type, as expected. We also found that optimized (stable) Pt clusters were bigger in size than that of the initial clusters, or clusters with bulk geometry.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In