0

Full Content is available to subscribers

Subscribe/Learn More  >

Water Based Multiwalled Carbon Nanotube Nanofluids With Optimized Thermal Conductivity

[+] Author Affiliations
Li Fei Chen, Huaqing Xie, Wei Yu, Yang Li

Shanghai Second Polytechnic University, Shanghai, China

Paper No. ICNMM2009-82055, pp. 917-920; 4 pages
doi:10.1115/ICNMM2009-82055
From:
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME

abstract

We report a method to prepare surfactant-free water based nanofluids containing multi-walled carbon nanotubes (CNTs). The as prepared CNTs with hard dispersibility, after being cut by mechanical ball-milling approach following strong acid treatment, can be directly dispersed into water. The thermal conductivity of the nanofluids is optimized by controlling the CNT length and straightness. It is realized by changed the ball-milling times. The thermal conductivity enhancement of water based CNT nanofluids with volume fraction of 1% attains 29.5% by controlling the CNT length and straightness when the temperature is 63.9°C.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In