Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Unsteady Flow Through a Two-Dimensional Channel With a Vocal Cord Model

[+] Author Affiliations
Suguru Miyauchi, Takeshi Omori, Shintaro Takeuchi, Takeo Kajishima

Osaka University, Suita, Osaka, Japan

Paper No. AJK2011-20009, pp. 3683-3688; 6 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by JSME


For the understanding of the phonation mechanism and for the design of an artificial vocal cord, we developed a computational method for the fluid-structure interaction, including the elastic walls and membranes. A robust and efficient method is required to deal with large deformation of biological materials and high frequency vibration. To this end, we apply an immersed boundary method. The flow through a two-dimensional channel including a pair of flexible structures, which is a simplification of a vocal cord, is simulated. The elastic solid is modeled by the St. Venant-Kirchhoff constitutive equation and its motion is simulated by a finite-element method, where the contact of the vocal cord is taken into account by a Lagrange multiplier method. The incompressible fluid flow is computed by a finite-difference method. Then the immersed-boundary method of a body-force type developed by the authors is successfully applied for the fluid-structure interaction. In the present results, the deformation of the structure and the frequency of the pulsating flow are reasonably reproduced. The obtained frequency is within the measured range of the data for a human vocal cord. Also, two velocity peaks are observed when the vocal cord is in the opening and closing phases in each period of the vocal cord vibration, and the velocity of the closing phase is larger than that of the opening phase.

Copyright © 2011 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In