0

Full Content is available to subscribers

Subscribe/Learn More  >

A Discrete-Forcing Immersed Boundary Method for the Fluid-Structure Interaction of an Elastic Slender Body

[+] Author Affiliations
Injae Lee, Haecheon Choi

Seoul National University, Seoul, Korea

Paper No. AJK2011-20005, pp. 3663-3668; 6 pages
doi:10.1115/AJK2011-20005
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by KSME

abstract

In the present study, a new immersed boundary method for the simulation of flow around an elastic slender body is suggested. The present method is based on the discrete-forcing immersed boundary method by Kim et al. (J. Comput. Phys., 2001) and is fully coupled with the elastic slender body motion. The incompressible Navier-Stokes equations are solved in an Eulerian coordinate and the elastic slender body motion is described in a Lagrangian coordinate, respectively. The elastic slender body is modeled as a thin flexible beam and is segmented by finite number of blocks. Each block is then moved by the external and internal forces such as the hydrodynamic, tension, bending, and buoyancy forces. With the proposed method, we simulate several flow problems including flows over a flexible filament, an oscillating insect wing, and a flapping flag. We show that the present method does not impose any severe limitation on the size of computational time step. The results obtained agree very well with those from previous studies.

Copyright © 2011 by KSME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In