0

Full Content is available to subscribers

Subscribe/Learn More  >

Characterisation of Flow and Mass Transfer in Cross Shape and T-Shape Micromixers

[+] Author Affiliations
Nassim Ait Mouheb, Camille Solliec

Ecole des Mines de Nantes, Nantes, France

Agnes Montillet, Jacques Comiti, Patrick Legentilhomme

CRTT, Saint-Nazaire, France

Dalimil Snita

Institute of Chemical Technology, Prague, Czech Republic

Paper No. ICNMM2009-82069, pp. 803-812; 10 pages
doi:10.1115/ICNMM2009-82069
From:
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME

abstract

The understanding of physical phenomena such as flow behaviour and mass transfer performance is needed in order to develop appropriate micromixers for industrial or biomedical applications. In this work, CFD is used to characterize the flow and the liquid mixing quality in a micromixer as a function of the Reynolds number. Two micromixers are studied in steady flow conditions; they are based on two geometries, respectively T-shaped (⊤) and cross-type (+). Simulations allow, in the case of ⊤ micromixers, to chart the topology of the flow and to describe the evolution of species concentration downstream the crossing. The streamlines layout and the mixing quality curves reveal three characteristic types of flow previously reported in the literature, depending on Reynolds number: stratified, vortex and engulfment flows. In the case of cross-type micromixers, the structure of the flow is strongly three-dimensional and is characterized by symmetrical vortices in both output channels. The results show that the + shaped system can improve the mixing process in comparison with the micromixers having ⊤ geometry. The second part of the study is experimental. Two cells are constructed, for both geometries (T-shaped and cross) using square channels with 400 μm hydraulic diameter. In order to use particle image velocimetry (PIV), a system has been adapted to measure velocity fields for various channel plans at different channel depths. This allows observing the evolution of the flow and the vortices development along the microchannels. A second experimental technique, the electrochemical one involving microelectrodes implemented at several positions on the channel wall located near the crossing, has been used. The electrochemical method can locally characterize the formation of swirling flows. These two complementary experimental results will be analysed and a comparison with the CFD results will be performed.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In