0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study on Mixing in a Chaotic Serpentine Mixer Using a Mapping Method

[+] Author Affiliations
T. G. Kang, M. K. Singh, P. D. Anderson, H. E. H. Meijer

Eindhoven University of Technology, Eindhoven, The Netherlands

Paper No. ICNMM2009-82060, pp. 797-801; 5 pages
doi:10.1115/ICNMM2009-82060
From:
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME

abstract

We introduce a chaotic serpentine mixer (CSM), which is motivated by the three-dimensional serpentine channel [Liu et al., 2000, J. Microelectromech. Syst. 9, pp. 190–197], and demonstrate a systematic way of utilizing the mapping method [Singh et al., 2008, Microfluid Nanofluid 5, pp. 313–325] to find out an optimal set of design variables for the new mixer. The new mixer shows globally chaotic mixing even in the Stokes flow regime, while maintaining the benefits of the original design. One geometrical period of the mixer consists of two functional units, inducing two flow portraits with crossing streamlines. Each half period of the mixer consists of an “L-shaped” bend and a bypass channel. The two flow portraits may be either co-rotational or counter-rotational. As a preliminary study, first of all, mixing in the original serpentine channel has been analyzed to demonstrate the flow characteristics and to find out a critical Reynolds number showing chaotic mixing above the limit. The working principle of the newly proposed mixer is explained by the manifold of the deforming interface between two fluids. To optimize the mixer, we choose three key design variables: the sense of rotation of the two flows, the aspect ratio of the rectangular channel, and the lateral location of the bypass channel. Then, simulations for all possible combinations of the variables are carried out. At proper combinations of the variables, almost global chaotic mixing is observed in the creeping flow regime. The design windows, provided as a result of the parameter study, can be used to determine a proper set of the design variables to fit with a specific application. The deforming interface of the two fluids shows that, even in a poor mixer in Stokes flow regime, as the Reynolds number increases, more efficient mixing is resulted in due to the enhanced cross-sectional vertical motion and back flows near the bends.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In