0

Full Content is available to subscribers

Subscribe/Learn More  >

Large Scale Flow Pulsation in Square Arrayed Rod Bundles

[+] Author Affiliations
Taehwan Kim, Hee-Yoon Jung, Ji-Yeul Bae, Kyung Min Kim, Hyung Hee Cho

Yonsei University, Seoul, Korea

Chang Hwan Shin, Wang-Kee In

Korea Atomic Energy Research Institute, Daejeon, Korea

Paper No. AJK2011-18005, pp. 3611-3616; 6 pages
doi:10.1115/AJK2011-18005
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by KSME

abstract

Turbulent air flow through subchannels is simulated to obtain characteristic frequency on large scale flow pulsation in square arrayed 6-rod bundles. The turbulent mixing between the subchannels is dominated by the large scale flow pulsation phenomenon. Therefore, it is crucial to understand flow patterns in the subchannels for the design of reliable nuclear reactor elements. Numerical simulation using a CFD code is performed by solving the unsteady equations with large eddy simulation (LES) model. For the numerical simulation, two kinds of grid including two subchannels are created. Models with two different P/D ratios (P/D = 1.08, 1.35) are simulated. P/D = 1.08 case is our main concern to investigate flows in tight lattice rod buddle. The shortened channel length with periodic boundary condition is employed to reduce the computing time. The geometry of the simulated model is based on the 3-D experimental equipment. The velocity fluctuation data in the stream-wise and cross directions are obtained from the simulated model to find the characteristic frequency. The large scale flow pulsations are explained by time history of velocity, Fast Fourier Transform analysis and cross-correlation analysis. The fluctuation frequency at the center of gap and 20 mm away from that point are obtained. The characteristic frequency is 87.5 Hz through the entire monitoring points. Results demonstrate that the periodic flow pulsations occur with small pitch-to-diameter ratio (P/D = 1.08) and the vortices trains are highly synchronized. There is no large scale pulsation in P/D = 1.35 case.

Copyright © 2011 by KSME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In