0

Full Content is available to subscribers

Subscribe/Learn More  >

The Numerical Investigation of a New Passive Micromixer With Improved Tesla Structure

[+] Author Affiliations
YanFeng Fan, Ibrahim Hassan

Concordia University, Montreal, QC, Canada

Paper No. ICNMM2009-82004, pp. 789-795; 7 pages
doi:10.1115/ICNMM2009-82004
From:
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME

abstract

In this paper, 3D numerical simulations are performed to investigate the mixing process within an improved Tesla micromixer. This improved Tesla micromixer applies the flow separation/recombination and converging/diverging principles to enhance mixing. A portion of the working fluid, which separates from the main flow, enters the Tesla side branch and mixes with the main flow again at the exit of the Tesla unit. The tested volume flow rate ranges from 1 μL/min to 100 μL/min. Grid independence is carried out to minimize the effect of numerical diffusion. Optimization is done to determine three parameters, which are the gap ratio (H/W), the mixing cell number (N), and the angle at the gap inlet (β). The effects of these three parameters on mixing are investigated at a volume flow rate of 100 μL/min. The simulation results show that the gap ratio is the most important factor. Three parameters are selected as H/W = 50/200, N = 10 and β = 90° for further investigation. The traditional Tesla micromixer is also simulated for comparison with the present design. The mixing efficiency is approximately 60% in the range of the tested volume flow rate. The improved micromixer has better mixing efficiency than the traditional Tesla micromixer when the volume flow rate is less than 50 μL/min.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In