0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Partition Wall Thickness on Heat Transfer Characteristics of a Gas-to-Gas Counterflow Microchannel Heat Exchanger

[+] Author Affiliations
K. Koyama, Y. Asako

Tokyo Metropolitan University, Tokyo, Japan

C. Hong

Tokyo University of Science, Chiba, Japan

Paper No. ICNMM2009-82041, pp. 745-752; 8 pages
doi:10.1115/ICNMM2009-82041
From:
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME

abstract

Effect of partition wall thickness on heat transfer characteristics of a two-stream counterflow gas-to-gas microchannel heat exchanger has been numerically investigated. The flow passages of the microchannel heat exchanger are plane channels of 100 μm in height and 20 mm in length. The partition wall thickness ranges from 20 μm to 200 μm. The material of the partition wall is assumed to be stainless steel. The numerical methodology is based on the Arbitrary-Lagrangian-Eulerian method. The computations were performed for a wide range of flow rate to investigate effect of partition wall thickness on heat transfer characteristics of the microchannel heat exchanger. The computational results are presented in form of temperature distributions, bulk temperatures, total temperatures, and heat flux variations along the channels. We have concluded that the partition wall thickness affects significantly heat transfer characteristics of a microchannel heat exchanger.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In