0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulations of Droplets on the Hydrophobic and Hydrophilic Walls by Lattice Boltzmann Method

[+] Author Affiliations
Yosuke Matsukuma, Gen Inoue, Masaki Minemoto

Kyushu University, Fukuoka, Japan

Paper No. AJK2011-17004, pp. 3535-3540; 6 pages
doi:10.1115/AJK2011-17004
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by JSME

abstract

Gas-liquid flows in/on porous structures are simulated by using of the two-phase Lattice Boltzmann method (LBM), in which the wetting boundary conditions on solid wall with complex geometry are incorporated. The complex geometry simulating the packed bed is numerically constructed by the discrete element method (DEM). It is confirmed that structure of the simulated packed bed is similar to the actual bed by comparison of wall friction factor. Next the behaviors of droplet on the porous structures are simulated with different wetting properties. For hydrophilic cases, the droplets set on the porous structure at initial stage penetrated into the porous structure as time marching on and spread in the bed. It was shown that the droplet behavior depends on the surface tension and its viscosity. From these numerical simulations, the applicability of LBM to Gas-liquid flows in/on porous structures was confirmed.

Copyright © 2011 by JSME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In