Full Content is available to subscribers

Subscribe/Learn More  >

Transport Phenomena in Novel Microstructures for Use in Thermal Separation Processes

[+] Author Affiliations
Lukas E. Wiesegger, Ralf P. Knauss, Thomas Winkler, Rolf J. Marr

Graz University of Technology, Graz, Austria

Stefan Maikowske, Jürgen J. Brandner

Forschungszentrum Karlsruhe GmbH, Karlsruhe, Germany

Paper No. ICNMM2009-82098, pp. 731-738; 8 pages
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME


In the present work novel microstructures are developed and studied by means of analytical and numerical methods. These microstructures form part of a demonstration microdevice to carry out a distillation without chemical reaction, two for the liquid and gaseous phase distribution/collection, and one for the liquid/gas mass transfer (“μTU-I,-II”). A solution for the 3D velocity field for the velocity component w in flow direction can be given for the rectangular and semicircular microchannel by using a lubrication approximation which gives good realistic values for the Reynolds number at low flow rates comparing to the common 2D approaches. The μTU-I is studied using the CFD code (6.3 FLUENT ® - 3ddp) by the approach of the VOF model. The simulations are performed with the test system methanol/water (distillation). By varying the flow rates of both phases and the contact angle, the condition until the occurrence of flooding of the microunit “μTU-I” is determined. The flooding and the optimum operating conditions of a new optimized configuration “μTU-II” -microunit are also investigated by means of numerical simulation (CFD). It can be shown that longitudinal instability is generated. Based on several concepts for liquid and gaseous phase distribution/collection by the Forschungszentrum Karlsruhe, novel microstructures (“Liquid-Distribution-Collection-Microstructure”, “Vapor-Distribution-Collection-Microstructure”) for both phases are developed, studied and optimized by using CFD. The results of all studies are verified based on the demonstration device in the laboratory.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In