0

Full Content is available to subscribers

Subscribe/Learn More  >

3D Flow Dynamics in a Patterned Round Microchannel

[+] Author Affiliations
Huihe Qiu, Peng Zhang

The Hong Kong University of Science & Technology, Hong Kong, China

Paper No. ICNMM2009-82086, pp. 723-730; 8 pages
doi:10.1115/ICNMM2009-82086
From:
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME

abstract

The development of MEMS requires deliberate designs for controlling fluids in the low Reynolds number regime. Arranging surface charges in rectangular channels to obtain in-plane or out-of-plane vortices have been studied by previous researchers. However, previous surface modification techniques require different signs of zeta potentials from the other wall surfaces which made it difficult in selecting and coating microchannels. Previously, the opposite polarities are usually adjusted by changing the pH value of the solution with acid chemicals in other researches which made the solution complicated and difficult to simulate a real application. Meanwhile the acid chemicals may also destroy the coating. It is convenient to use same polarity patches if a vortex flow can also be generated. However, it is not clear if the patterned surface charges have the same polarity of zeta potentials as the other walls, what kind flow pattern will be generated and what mechanism behind the flow pattern. Furthermore, the cross-section of previously studied microchannels is usually limited to a rectangular shape. Therefore, the surface charge patterns are usually in 2D since the sidewalls of the rectangular microchannels are difficult to be patterned. However, a channel with round cross-section has better leak-proof performance of the membrane valve. Furthermore, a round channel is also advantageous in mimicking the human vein when a vascular structure is needed in tissue scaffolding, the round microfluidic channel is considered as a good candidate for an artificial capillary vessel. It is anticipated that there will be no stagnation occurs at the corner edges, which occurs at the corners of a rectangular channel, for a round microchannel owing to the perfectly symmetrical velocity profile. This is important when the microfluidic chip is subjected to a separation process such as liquid chromatography. In this paper, effects of patterned surface modification on 3D vortex flows generation in a micro capillary tube under very low Reynolds number have been investigated. Microfabrication technology was successfully employed to pattern surface charges on inner surfaces of round capillary tubes, which form non-uniform zeta-potentials. This technique extends the heterogeneous surfaces from flat surface to curved surface. 3D vortices are visualized and measured at the vicinity of tube walls when an electric field is applied across the surfaces utilizing micro resolution PIV. It demonstrated that 3D vortices can also be generated by the patterned surface charges with a same polarity. Experimental results have been compared with the numerical simulations using CFD-ACE+.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In