Full Content is available to subscribers

Subscribe/Learn More  >

Formation of Droplets in a T-Junction Microfluidic Device Using the Lattice Boltzmann Method

[+] Author Affiliations
Amit Gupta, S. M. Sohel Murshed, Ranganathan Kumar

University of Central Florida, Orlando, FL

Paper No. ICNMM2009-82158, pp. 647-654; 8 pages
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME


In recent years, microfluidic devices that generate micron sized droplets/bubbles have found widespread applications in drug delivery, microanalysis, tumor destruction, as ultrasound agents and in chemical reactions at the micron level. In the current work, simulations results are being presented for a T-junction device for formation of micron-sized droplets using the lattice Boltzmann method. In this work, the key parameters of interest for estimating the frequency and volume of the generated droplets are the flow rates and viscosities of the two fluids, and the geometry of the flow channel. Simulations at low Capillary number indicate that droplets formed occupy the whole volume of the main channel and undergo a squeezing regime. At higher Ca, droplets of size smaller than the width of the channel are formed, and the frequency is dependent on the flow rates of the two liquids. The effect of the width of the dispersed and continuous phase channels is also investigated.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In