Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study on the Thermal Characteristics of Large Sized Silicon Polycrystal Growth by DS Method

[+] Author Affiliations
Hyeon-Seok Seo, Youn-Jea Kim

Sungkyunkwan University, Suwon, Korea

Paper No. AJK2011-14015, pp. 3343-3348; 6 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by KSME


The development of the manufacturing processes of solar silicon ingot is one of the more important issues to guarantee the growth of the photovoltaic industry, because of the saving of manufacturing costs of ingots, wafers, solar cells and of solar modules. Several solidification processes have been developed by industries, including casting, heat exchanger method and electromagnetic casting. However, the market growth using mono- and polycrystalline Si wafers might be saturated due to the shortage of Si feedstock. One of the methods to solve this problem is to make higher quality polycrystalline Si wafers which are capable of producing higher efficiency solar cells. In this paper, the effects of changing several geometrical configurations of cooling path were evaluated to improve the directional solidification (DS) method and to achieve the main issues. The developed DS method has the advantages of the small heat loss, short cycle time and efficient directional solidification. Based on the CFD (computational fluid dynamics) model, the simulation was performed on the thermal characteristics during the DS process. Using a commercial CFD code, Fluent, the thermal characteristics in the DS system are calculated, and the results are graphically depicted.

Copyright © 2011 by KSME
Topics: Silicon



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In