Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Acoustic Pressure and Flexural Vibration on Friction Reduction Effect by Ultrasonic

[+] Author Affiliations
Takahiro Nakayama, Mitsuaki Ochi, Kenji Kofu

Nihon University, Tokyo, Japan

Paper No. AJK2011-14011, pp. 3323-3329; 7 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by JSME


The influence of acoustic pressure and flexural vibration on friction reduction effect by ultrasonic has been investigated in this study. Then the relationship between friction reduction of particles by each effect and the particle density has been shown by using of ultrasonic. Additionally, the maximum of particle density which could receive the friction reduction effect by the acoustic pressure has been expressed. In short, when the particle density was large, the influence of friction reduction effect by the acoustic pressure decreased and the influence of friction reduction effect by the flexural vibration grew. In this study, two plates were set parallel to each other. The dried particles were scattered on the lower plate, and the ultrasonic was applied. Then, the entire equipment setup was tilted slowly until the scattered particles began to move, and the friction coefficient was measured. Then, influence of acoustic pressure and flexural vibration were evaluated. In order to evaluate the reduction effect by acoustic pressure and flexural vibration, firstly, the distribution of acoustic pressure between reflection plate and the vibration plate have been measured. As a result, it was clarified that acoustic pressure distribution became the almost same whether ultrasonic was applied for the upper or lower plate, and the reflection plate vibrated little. Therefore it was possible to divide the influence of acoustic pressure and flexural vibration on the friction reduction.

Copyright © 2011 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In