Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Fluidizing Velocity on Fluidized Powder Conveying in a Horizontal Rectangular Channel

[+] Author Affiliations
Koichiro Ogata, Tomoya Furukawa, Yusuke Yamamoto

Oshima College of Maritime Technology, Suo-Oshima, Yamaguchi, Japan

Paper No. AJK2011-12012, pp. 3171-3177; 7 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by JSME


This study experimentally investigated the high dense pneumatic conveying of glass beads in a horizontal rectangular channel using the fluidizing air. The powder used belongs to Geldart A particle, where the mean diameter is 53 μm, the particle density is 2523kg/m3 and the minimum fluidizing velocity is 4.329mm/s. The fluidized powder conveying system consists of a powder supply hopper, a horizontal rectangular channel at the side of hopper and a receiving tank. The powder was fluidized by air through the porous membrane at the bottom of hopper and horizontal channel. Then, this system could be transported the fluidized powder toward the horizontal direction. In this study, the mass of transported powder, the bed height of powder in a hopper and the supply air pressure were measured when the fluidizing velocities at the bottom of hopper and horizontal channel were changed. The mass of transported powder with the fluidizing air to the bottom of hopper multiplied rapidly when the fluidizing velocity at the bottom of horizontal channel was larger than the minimum fluidizing velocity. Therefore, the fluidizing air at the bottom of hopper and horizontal channel was important to obtain smooth powder conveying on this system. Also, the mass flow rate of powder and the solid loading ratio were estimated from the mass of transported powder against the elapsed time. As the result, the solid loading ratio has taken a one peak when the fluidizing velocity at the bottom of channel was larger than the minimum fluidizing velocity. It was found from the analyzed solid loading ratio that the high dense powder conveying was possible in this system.

Copyright © 2011 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In