0

Full Content is available to subscribers

Subscribe/Learn More  >

The Critical Heat Flux in Nucleate Boiling Heat Transfer: Part I—The Chemical Actuator Mechanism

[+] Author Affiliations
M. R. Reda

University of Saskatchewan, Saskatoon, SK, Canada

Paper No. ICNMM2009-82114, pp. 549-565; 17 pages
doi:10.1115/ICNMM2009-82114
From:
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME

abstract

Nucleate boiling heat transfer is first introduced and the literature is reviewed. It was concluded that the passive layer and the grain boundaries are responsible for the transfer to the nucleate boiling regime. Based on the recent work of Biener and his collaborators (Nature Material 2008) and the Gibbs rule of thermodynamics, a possible mechanism was outlined. The mechanism assumes that each grain in the passive layer act as a chemical actuator which is driven by microstructure phase change. The new mechanism agrees well with the experimental results, in good agreement with previous models and can explain why and how CHF occurs.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In