Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer Characteristics and Cooling Performance of Microchannel Heat Sinks With Nanofluids

[+] Author Affiliations
Chien-Hsin Chen, Chang-Yi Ding

National Formosa University, Yunlin, Taiwan

Paper No. ICNMM2009-82079, pp. 521-527; 7 pages
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME


This paper presents a numerical study on the heat transfer characteristics and cooling performance of a microchannel heat sink with water-γAl2 O3 nanofluids having different nanoparticle volume fraction. In view of the small dimensions of the microstructures, the microchannel heat sink is modeled as a fluid-saturated porous medium in the simulation. The Forchheimer-Brinkman-extended Darcy equation is used to describe the fluid flow and the two-equation model with thermal dispersion is utilized for heat transfer. Typical results for the temperature distributions of the fin and fluid phase are presented for various values of the inertial force parameter. It is found that the fin temperature distribution is practically not sensitive to the inertial effect, while the fluid temperature distribution and the total thermal resistance change significantly due to the inertial force effect. In general, the effect of fluid inertia is to reduce the total thermal resistance and the temperature difference between the fin and the fluid phase. The total thermal resistances obtained from the present model with inertial effect match well with the available experimental results, whereas the thermal resistance is overestimated as the inertial effect is neglected.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In