0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Modeling of a Novel Cooling, Heat, Power, and Water Microturbine Combined Cycle

[+] Author Affiliations
ChoonJae Ryu, Aditya Srinivasan, David R. Tiffany, John F. Crittenden, William E. Lear, S. A. Sherif

University of Florida, Gainesville, FL

Paper No. ES2008-54095, pp. 735-746; 12 pages
doi:10.1115/ES2008-54095
From:
  • ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences
  • ASME 2008 2nd International Conference on Energy Sustainability, Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4319-2 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

The Power, Water Extraction, and Refrigeration (PoWER) engine has been investigated for several years as a distributed energy (DE) system among other applications for civilian or military use. Previous literature describing its modeling and experimental demonstration have indicated several benefits, especially when the underlying semi-closed cycle gas turbine is combined with a vapor absorption refrigeration system, the PoWER system described herein. The benefits include increased efficiency, high part-power efficiency, small lapse rate, compactness, low emissions, lower air and exhaust flows (which decrease filtration and duct size) and condensation of fresh water. The present paper describes the preliminary design and its modeling of a modified version of this system as applied to DE system, especially useful in regions which are prone to major grid interruptions due to hurricanes, under-capacity, or terrorism. In such cases, the DE system should support most or all services within an isolated service island, including ice production, so that the influence of the power outage is contained in magnitude and scope. The paper describes the rather straightforward system modifications necessary for ice production. However, the primary focus of the paper is on dynamic modeling of the ice making capacity to achieve significant load-leveling during the summer utility peak, hence reducing the electrical capacity requirements for the grid.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In