Full Content is available to subscribers

Subscribe/Learn More  >

Lattice Boltzmann Method Used to Simulate an Unsteady Flow Around an Obstacle in Laminar Regime

[+] Author Affiliations
Wafik Abassi

LUNAM Université, Nantes, France; Université de Monastir, Monastir, Tunisie

Fethi Aloui

LUNAM Université, Nantes, France

Sassi Ben Nasrallah

Université de Monastir, Monastir, Tunisie

Jack Legrand

LUNAM Université, Saint-Nazaire, France

Paper No. AJK2011-13005, pp. 3047-3055; 9 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by ASME


This work deals with the application of the lattice Boltzmann method to simulate the unsteady laminar flow around a confined square obstacle. For this configuration, we can observe some regimes that fluid may occur during its flowing. We have determined numerically the flow behavior for linear and stable regime. The variable aspect of the flow observed depends on the Reynolds number. In this study, we determine the velocity fields for a various Reynolds numbers by resolving the Navier-Stokes equations using the Lattice Boltzmann Method with BGK schema. This method is a recent extension of the LB method which demonstrated its potential for describing incompressible flow around an obstacle. A numerical study of 2D and 3D problem around a square obstacle using the Lattice Boltzmann Method with BGK schema is presented for an unsteady flow in laminar regime. The flow behavior in a horizontal channel with a rectangular cross-section, where a squared obstacle is placed in the middle, is discussed. In the 2D simulation, the obtained numerical results show a good agreement with experimental results [18]. Then we extend the ability of this method to solve the 3D problem. Numerical results behind the obstacle, obtained for various Reynolds numbers, are also analyzed and discussed.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In