0

Full Content is available to subscribers

Subscribe/Learn More  >

Trends in COP for Adsorption Cooling Cycles With Thermal Regeneration and Finite Number of Beds

[+] Author Affiliations
Derek K. Baker, Bilgin Kaftanoğlu

Middle East Technical University, Ankara, Turkey

Paper No. ES2008-54039, pp. 601-608; 8 pages
doi:10.1115/ES2008-54039
From:
  • ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences
  • ASME 2008 2nd International Conference on Energy Sustainability, Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4319-2 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

A thermodynamic model is developed to predict trends in limiting COP of an adsorption cooling cycle with thermal regeneration between n beds, where n is any even number and each bed is spatially isothermal. The results of the model indicate the optimum distribution of beds throughout the cycle to maximize thermal regeneration. Simulations were run for silica gel-water and zeolite-water adsorbent-refrigerant pairs as the maximum bed temperature and the bed’s sensible load were varied. For the silica gel-water pair, the exothermic adsorption process occurs at lower temperatures than the endothermic desorption process, which prevents the latent loads from being thermally regenerated. This inability to regenerate latent loads results in a relatively small opportunity to increase COP through thermal regeneration, and this opportunity decreases rapidly with increasing number of beds. Conversely, for the zeolite-water pair much of the exothermic adsorption process occurs over the same temperature range as the endothermic desorption process, which allows a significant portion of the latent loads to be thermally regenerated. This ability to regenerate latent loads results in a much larger opportunity to increase COP through thermal regeneration, and this opportunity decreases much more gradually with increasing number of beds.

Copyright © 2008 by ASME
Topics: Cooling , Cycles

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In