0

Full Content is available to subscribers

Subscribe/Learn More  >

Tank Design for On-Board Hydrogen Storage in Metal Hydrides

[+] Author Affiliations
Karelle Couturier, Farida Joppich, Antje Wörner, Rainer Tamme

DLR - German Aerospace Center, Stuttgart, Germany

Paper No. ES2008-54031, pp. 517-524; 8 pages
doi:10.1115/ES2008-54031
From:
  • ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences
  • ASME 2008 2nd International Conference on Energy Sustainability, Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4319-2 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

The aim of this work is to reduce the refueling time of a metal hydride storage tank by improving its design, taking in account the total volumetric and mass capacity of the tank. A heat and mass transfer model is proposed and solved to obtain the charging curve for 1 kg hydrogen in a LaNi5 reference storage tank. Compared to gas transport and reaction kinetics, heat transfer is found to limit the hydrogen charging dynamics of the storage tank. To improve the refueling time, it is found to be necessary to increase first of all the heat transfer inside the metal hydride bed, and subsequently the heat transfer from the metal hydride bed to the cooling fluid. Technical solutions such as the implementation of aluminum foam and/or internal heat exchanger tubes are investigated. By combining both solutions, the refueling time can be reduced from 400 minutes (reference tank) to 15 minutes. The tank volume still meets the DOE targets, but its mass remains a problem. Therefore, new materials with improved gravimetric capacity have to be developed. With this work it is now possible to improve the tank design for newly developed storage materials and to evaluate their potential for technical applications.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In