Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Gaseous Flow in a Micro-Tube

[+] Author Affiliations
Yasuhiro Yoshida

Tokyo University of Science, Noda, Chiba, Japan

Chungpyo Hong, Koichi Suzuki

Tokyo University of Scinece, Noda, Chiba, Japan

Yutaka Asako

Tokyo Metropolitan University, Hachioji, Tokyo, Japan

Paper No. ICNMM2009-82054, pp. 383-389; 7 pages
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME


Experimental investigations on nitrogen gas flow characteristics were performed for a micro-tube. The micro-tube was fabricated in a stainless steel block by electrical discharge machining (EDM). The tube diameter was 326 μm and the ratio of length to diameter was 200. The stagnation pressure was chosen in such a way that the exit Mach number ranged from 0.1 to 1.4. The outlet pressure was fixed at atmospheric conditions. The pressure was locally measured at five locations along tube length to determine local values of Mach number and friction factor for a wide range of flow regime from laminar to turbulent flow. The result shows that f·Re is a function of Mach number and higher than incompressible value, 64 due to the compressibility effect. The values of f·Re were compared with f·Re correlation in literature. In additional experiments, Mach number at the micro-tube exit was measured by using a Shadowgraph system which visualizes the shock wave of the gas. The micro-tube with 400 μm in diameter was used for the experiment. The super sonic flow was observed since Mach number at the micro-tube exit was beyond unity. The experimental results for laminar flow were compared with the numerical results obtained by the arbitrary-Lagrangian-Eulerian method. The both results are in excellent agreement.

Copyright © 2009 by ASME
Topics: Gas flow



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In