Full Content is available to subscribers

Subscribe/Learn More  >

Cost Optimization of a Plug-In Hybrid Electric Vehicle

[+] Author Affiliations
Sam Golbuff, Elizabeth D. Kelly, Samuel V. Shelton

Georgia Institute of Technology, Atlanta, GA

Paper No. ES2008-54326, pp. 497-505; 9 pages
  • ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences
  • ASME 2008 2nd International Conference on Energy Sustainability, Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4319-2 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


In order to decrease the use of petroleum and release of greenhouse gases such as carbon dioxide, the efficiency of transportation vehicles must be increased. One way to increase vehicle efficiency is by extending the electric-only operation of hybrid electric vehicles through the addition of batteries that can be charged using grid electricity. These plug-in hybrid electric vehicles (PHEVs) are currently being developed for introduction into the U.S. market. As with any consumer good, cost is an important design metric. This study optimizes a PHEV design for a mid-size, gasoline-powered passenger vehicle in terms of cost. Three types of batteries, Pb-acid, NiMH, and Li-ion, and three all-electric ranges of 10, 20, and 40 miles (16.1, 32.2, and 64.4 km) were examined. System modeling was performed using Powertrain Systems Analysis Toolkit (PSAT), an Argonne National Laboratory-developed tool. Performance constraints such as acceleration, sustained grade ability, and top speed were met by all systems. The societal impact of the least cost optimum system was quantified in terms of reduced carbon emissions and gasoline consumption. All of the cost optimal designs (one for each combination of all-electric distance and battery type) demonstrated more than a 60% reduction in gasoline consumption and 45% reduction in CO2 emissions, including the emissions generated from producing the electricity used to charge the battery pack, as compared with an average car in the current U.S. fleet. The least cost design for each all-electric range consisted of a Pb-acid design, including a necessary battery replacement of the battery pack twice during the 15 year assumed life. Due to the cost of the battery packs, the 10-mile all-electric range proved to be the least costly. Also, this system saved the most carbon dioxide emissions, a 53% reduction. The most fuel savings came from the PHEV40 system, yielding an 80% reduction in gasoline consumption.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In