0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Biodiesel-Ethanol Blended Fuel Spray Characteristics on the Reduction of Exhaust Emissions in a Common-Rail Diesel Engine

[+] Author Affiliations
Seung Hyun Yoon, Su Han Park, Hyun Kyu Suh, Chang Sik Lee

Hanyang University, Seoul, South Korea

Paper No. ES2008-54227, pp. 463-470; 8 pages
doi:10.1115/ES2008-54227
From:
  • ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences
  • ASME 2008 2nd International Conference on Energy Sustainability, Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4319-2 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

An experiment was performed to analyze the effects of biodiesel-ethanol blended fuel spray on the combustion and exhaust emission characteristics of a single-cylinder common-rail diesel engine. To analyze the macroscopic and microscopic characteristics of biodiesel blended fuel spray, measurements of the injection rate, droplet diameter, and spray tip penetration were taken using an injection rate meter, spray visualization and a droplet measuring system. The combustion, exhaust emission characteristics and size distributions of particulate matter were determined for various engine operating conditions using biodiesel-ethanol blends, and the results were compared to those of conventional diesel fuel. In this investigation, the measured results of biodiesel-ethanol blended fuels show that the Sauter mean diameter (SMD) decreased with an increase of relative velocity between the injected fuel and ambient gas. Comparing the combustion characteristics of diesel fuel and biodiesel-ethanol blended fuels, both diesel and blended fuel showed similar trends in combustion pressure and the rate of heat release. However, the combustion of biodiesel-ethanol blends had lower combustion characteristics such as combustion pressures and heat release rates than those of diesel fuel because of their lower heating values. In the case of exhaust gas recirculation (EGR), the indicated specific NOx (ISNOx ), and soot concentrations were lower than those of conventional diesel fuel.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In