0

Full Content is available to subscribers

Subscribe/Learn More  >

An Estimation of the Performance Limits of Dry Cooling on Trough-Type Solar Thermal Plants

[+] Author Affiliations
Huifang Deng, Robert F. Boehm

University of Nevada-Las Vegas, Las Vegas, NV

Paper No. ES2008-54335, pp. 413-418; 6 pages
doi:10.1115/ES2008-54335
From:
  • ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences
  • ASME 2008 2nd International Conference on Energy Sustainability, Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4319-2 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

The southwestern US is an ideal location for solar power plants due to its abundant solar resource, while there is a difficulty in implementing wet cooling systems due to the shortage of water in this region. Dry cooling could be an excellent solution for this, if it could achieve a high efficiency and low cost as wet cooling. Some dry cooling systems are currently in operation, and investigations of their performance have been reported in the literature. This paper looks into the limits to the power production implicit in dry cooling, assuming that improvements might be made to the system components. Use of higher performance heat transfer surfaces is one such possible improvement. We have developed a model of a fairly typical, but simplified, solar trough plant, and simulated thermodynamic performance of this with the software Gatecycle. We have examined the power generation and cycle efficiency of the plant for the Las Vegas vicinity with conventional wet cooling and conventional dry cooling cases considered separately using this software. TMY2 data are used for this location for this purpose. Similarly, the same studies are carried out for “ideal” cooling systems as a comparison. We assumed that in the ideal dry cooling system, the condensing temperature is the ambient dry bulb temperature, and in the ideal wet cooling system, it is the ambient wet bulb temperature. It turned out that the ideal dry cooling system would significantly outperform the conventional wet cooling system, indicating the possibility of the dry cooling system being able to achieve increased performance levels with component improvements.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In