0

Full Content is available to subscribers

Subscribe/Learn More  >

Motion Energy Harvesting Using Catch-and-Release Mechanism

[+] Author Affiliations
Brian S. Hendrickson, Stuart B. Brown

Veryst Engineering, LLC, Needham, MA

Paper No. ES2008-54191, pp. 339-349; 11 pages
doi:10.1115/ES2008-54191
From:
  • ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences
  • ASME 2008 2nd International Conference on Energy Sustainability, Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4319-2 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

Small-scale motion energy harvesting has garnered significant interest in recent years, especially given advances in piezoelectric materials, but with limited commercial application. Most harvesting methods to date, including those employing magnetic induction, have focused on coupled resonance. Such harvesters are tuned to resonate with their excitation source and have shown promise in capturing moderately high-frequency (>10Hz), low-displacement motion that is steady. However, coupled harvesters lose efficiency significantly when a source deviates slightly in frequency. They also require large masses and/or buoyant volumes to efficiently capture low frequency (<10Hz) motion. We have been developing a novel technology that combines electromagnetic induction with a proprietary catch-and-release mechanism that absorbs an input motion and then releases it at a much higher frequency to improve conversion efficiency. The energy harvester is simple, compact, and insensitive to excitation frequency. Initial prototypes have demonstrated power densities and specific powers many multiples greater than the best-performing, commercial vibration harvester. We have also developed a validated computer model of the system that indicates that performance could be improved 2–4 times over initial prototypes.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In