0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamics of Cell Pattern Formation in Internally Heated Convection Viewed From Local to Global Particle Image Thermometry

[+] Author Affiliations
Ryuta Abe, Yuji Tasaka, Ichiro Kumagai, Yuichi Murai

Hokkaido University, Sapporo, Japan

Takatoshi Yanagisawa

Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Paper No. AJK2011-11014, pp. 2717-2722; 6 pages
doi:10.1115/AJK2011-11014
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by JSME

abstract

Internally heated convection is a fundamental phenomenon, largely governing the dynamics of natural systems such as the atmosphere and Earth’s mantle. It also plays an important role in industrial applications. Here we have investigated the separation of the top thermal boundary layer in order to understand the cell enlargement and the dynamics of the cell pattern formation. To observe the development of the thermal boundary layer non-invasively, the temperature distribution of the vertical plane in a convective cell was visualized by particle image thermometry (PIT). Micro-encapsulated thermo-chromic liquid crystals (TLCs) were seeded in the test fluid and illuminated by a white light sheet, and scattering light was taken by a digital camera. For quantitative temperature measurement, we have calibrated the temperature changes with the variation of the hue color component. The development of the thermal boundary layer with respect to the Rayleigh number has been investigated. The results show the local Rayleigh number determined from the thickness of the thermal boundary layer, which increases towards a critical local Rayleigh number ∼600.

Copyright © 2011 by JSME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In